TR-2011004: Acceleration of Newton's Polynomial Factorization: Army of Constraints, Convolution, Sylvester Matrices, and Partial Fraction Decomposition

نویسنده

  • Victor Y. Pan
چکیده

We try to arm Newton’s iteration for univariate polynomial factorization with greater convergence power by shifting to a larger basic system of multivariate constraints. The convolution equation is a natural means for a desired expansion of the basis for this iteration versus the classical univariate method, which is more vulnerable to foreign distractions from its convergence course. Compared to Viete’s equations, the convolution equation directs the Newton’s root-finding iteration to factorization (which is a task of independent interest) and enables approximation of a single root. Combining convolution with partial fraction decomposition (PFD) yields even a greater army of constraints. By linking PFD with Sylvester and generalized Sylvester matrices we extend to their inverses the celebrated formula by Gohberg and Semencul for Toeplitz matrix inversion. Furthermore, we accelerate the solution of Sylvester and generalized Sylvester linear systems in the important case where all but one of the basic polynomials defining the matrix have small degrees. This enables us to speed up Newton’s convolution steps.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acceleration of Newton’s Polynomial Factorization: Army of Constraints, Convolution, Sylvester Matrices, and Partial Fraction Decomposition

We try to arm Newton’s iteration for univariate polynomial factorization with greater convergence power by shifting to a larger basic system of multivariate constraints. The convolution equation is a natural means for a desired expansion of the basis for this iteration versus the classical univariate method, which is more vulnerable to foreign distractions from its convergence course. Compared ...

متن کامل

TR-2011003: Partial Fraction Decomposition, Sylvester Matrices, Convolution and Newton's Iteration

Both Sylvester matrix and convolution are defined by two polynomials. If one of them has small degree, then the associated Sylvester linear system can be solved fast by using its PFD interpretation of the convolution equation. This can immediately simplify the refinement of approximate convolution by means of Newton’s iteration, where we also incorporate the PFD refinement techniques or alterna...

متن کامل

Partial Fraction Decomposition , Sylvester Matrices , Convolution and Newton ’ s Iteration ∗

Both Sylvester matrix and convolution are defined by two polynomials. If one of them has small degree, then the associated Sylvester linear system can be solved fast by using its PFD interpretation of the convolution equation. This can immediately simplify the refinement of approximate convolution by means of Newton’s iteration, where we also incorporate the PFD refinement techniques or alterna...

متن کامل

New Bases for Polynomial-Based Spaces

Since it is well-known that the Vandermonde matrix is ill-conditioned, while the interpolation itself is not unstable in function space, this paper surveys the choices of other new bases. These bases are data-dependent and are categorized into discretely l2-orthonormal and continuously L2-orthonormal bases. The first one construct a unitary Gramian matrix in the space l2(X) while the late...

متن کامل

Numerical solution of a system of fuzzy polynomial equations by modified Adomian decomposition method

In this paper, we present some efficient numerical algorithm for solving system of fuzzy polynomial equations based on Newton's method. The modified Adomian decomposition method is applied to construct the numerical algorithms. Some numerical illustrations are given to show the efficiency of algorithms.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016